Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1358935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708397

RESUMO

Super-resolution microscopy (SRM) approaches revolutionize cell biology by providing insights into the nanoscale organization and dynamics of macromolecular assemblies and single molecules in living cells. A major hurdle limiting SRM democratization is post-acquisition data analysis which is often complex and time-consuming. Here, we present OneFlowTraX, a user-friendly and open-source software dedicated to the analysis of single-molecule localization microscopy (SMLM) approaches such as single-particle tracking photoactivated localization microscopy (sptPALM). Through an intuitive graphical user interface, OneFlowTraX provides an automated all-in-one solution for single-molecule localization, tracking, as well as mobility and clustering analyses. OneFlowTraX allows the extraction of diffusion and clustering parameters of millions of molecules in a few minutes. Finally, OneFlowTraX greatly simplifies data management following the FAIR (Findable, Accessible, Interoperable, Reusable) principles. We provide a detailed step-by-step manual and guidelines to assess the quality of single-molecule analyses. Applying different fluorophores including mEos3.2, PA-GFP, and PATagRFP, we exemplarily used OneFlowTraX to analyze the dynamics of plant plasma membrane-localized proteins including an aquaporin, the brassinosteroid receptor Brassinosteroid Insensitive 1 (BRI1) and the Receptor-Like Protein 44 (RLP44).

2.
Stress Biol ; 3(1): 42, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747566

RESUMO

BRI1-ASSOCIATED KINASE 1 (BAK1/SERK3) and its closest homolog BAK1-LIKE 1 (BKK1/SERK4) are leucine-rich repeat receptor kinases (LRR-RKs) belonging to the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family. They act as co-receptors of various other LRR-RKs and participate in multiple signaling events by complexing and transphosphorylating ligand-binding receptors. Initially identified as the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) co-receptor, BAK1 also functions in plant immunity by interacting with pattern recognition receptors. Mutations in BAK1 and BKK1 cause severely stunted growth and cell death, characterized as autoimmune cell death. Several factors play a role in this type of cell death, including RKs and components of effector-triggered immunity (ETI) signaling pathways, glycosylation factors, ER quality control components, nuclear trafficking components, ion channels, and Nod-like receptors (NLRs). The Shan lab has recently discovered a novel RK BAK-TO-LIFE 2 (BTL2) that interacts with BAK1 and triggers cell death in the absence of BAK1 and BKK1. This RK compensates for the loss of BAK1-mediated pattern-triggered immunity (PTI) by activating phytocytokine-mediated immune and cell death responses.

3.
Biol Rev Camb Philos Soc ; 98(3): 747-774, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36639936

RESUMO

Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.


Assuntos
Transdução de Sinais , Receptores Toll-Like , Animais , Imunidade Inata , Sistema Imunitário , Mamíferos
4.
Cell Host Microbe ; 30(12): 1717-1731.e6, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446350

RESUMO

Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunidade Vegetal , Imunidade , Homeostase
5.
Front Plant Sci ; 13: 798751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548317

RESUMO

Plants are indispensable on earth and their improvement in terms of food security is a need of time. The current study has been designed to investigate how biogenic zinc nanoparticles (Zn NPs) can improve the growth and development of Brassica napus L. In this study, Zn NPs were synthesized utilizing Mentha arvensis aqueous extracts, and their morphological and optical properties were assessed using UV-Visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized Zn NPs were irregular in shape, indicating aggregation in pattern, with an average particle size of 30 nm, while XRD analysis revealed the crystalline structure of nanoparticles. The growth and development of B. napus varieties (Faisal canola and Shiralee) were assessed after foliar treatments with different concentrations of biogenic Zn NPs. In B. napus varieties, exposure to 15 mg/L Zn NPs dramatically increased chlorophyll, carotenoid content, and biomass accumulation. Similarly, proteomic analyses, on the other hand, revealed that proteins associated with photosynthesis, transport, glycolysis, and stress response in both Brassica varieties were substantially altered. Such exposure to Zn NPs, differential expression of genes associated with photosynthesis, ribosome structural constituents, and oxidative stress response were considerably upregulated in B. napus var. (Faisal and Shiralee canola). The results of this study revealed that foliar applications of biogenic Zn NPs influence the transcriptome and protein profiling positively, therefore stimulating plant growth and development.

6.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34947510

RESUMO

The global economic success of man-made nanoscale materials has led to a higher production rate and diversification of emission sources in the environment. For these reasons, novel nanosafety approaches to assess the environmental impact of engineered nanomaterials are required. While studying the potential toxicity of metal nanoparticles (NPs), we realized that gold nanoparticles (AuNPs) have a growth-promoting rather than a stress-inducing effect. In this study we established stable short- and long-term exposition systems for testing plant responses to NPs. Exposure of plants to moderate concentrations of AuNPs resulted in enhanced growth of the plants with longer primary roots, more and longer lateral roots and increased rosette diameter, and reduced oxidative stress responses elicited by the immune-stimulatory PAMP flg22. Our data did not reveal any detrimental effects of AuNPs on plants but clearly showed positive effects on growth, presumably by their protective influence on oxidative stress responses. Differential transcriptomics and proteomics analyses revealed that oxidative stress responses are downregulated whereas growth-promoting genes/proteins are upregulated. These omics datasets after AuNP exposure can now be exploited to study the underlying molecular mechanisms of AuNP-induced growth-promotion.

7.
PLoS One ; 15(11): e0241568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170873

RESUMO

The use of nanomaterials in agriculture is a current need and could be helpful in overcoming food security risks. Brassica napus L. is the third most important crop for edible oil, having double low unsaturated fatty acids. In the present study, we investigated the effects of green synthesized Zn NPs on biochemical effects, antioxidant enzymes, nutritional quality parameters and on the fatty acid profile of rapeseed (B. napus). Plant-mediated synthesis of zinc nanoparticles (Zn NPs) was carried out using Mentha arvensis L. leaf extract followed by characterization through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-Ray (EDX), and X-Ray diffraction (XRD). NPs exhibited irregular shapes ranging in size from 30-70 nm and EDX analysis confirmed 96.08% of Zn in the sample. The investigated biochemical characterization (protein content, proline content, total soluble sugar (TSS), total flavonoid content (TFC), and total phenolic content (TPC) showed a substantial change on exposure to Zn NPs. A dose-dependent gradual increase was observed in the antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Oil and moisture contents dropped significantly from the control level in the rapeseed (B. napus) varieties. However, different trends in nutritional (Zn, Na+, K+) and fatty acid profiling of B. napus have been noted. This study demonstrates that Zn NPs have the potential to improve the biochemical, nutritional, antioxidant enzymes, and fatty acid profile of B. napus varieties.


Assuntos
Brassica napus/efeitos dos fármacos , Fertilizantes , Química Verde/métodos , Nanopartículas Metálicas/administração & dosagem , Zinco/administração & dosagem , Brassica napus/fisiologia , Catalase/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Mentha/química , Nanopartículas Metálicas/química , Nutrientes/análise , Nutrientes/metabolismo , Peroxidase/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Zinco/química
8.
Proc Natl Acad Sci U S A ; 117(43): 27044-27053, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055218

RESUMO

Plants utilize a two-tiered immune system consisting of pattern recognition receptor (PRR)-triggered immunity (PTI) and effector-triggered immunity (ETI) to defend themselves against pathogenic microbes. The receptor protein kinase BAK1 plays a central role in multiple PTI signaling pathways in Arabidopsis However, double mutants made by BAK1 and its closest paralog BKK1 exhibit autoimmune phenotypes, including cell death resembling a typical nucleotide-binding leucine-rich repeat protein (NLR)-mediated ETI response. The molecular mechanisms of the cell death caused by the depletion of BAK1 and BKK1 are poorly understood. Here, we show that the cell-death phenotype of bak1 bkk1 is suppressed when a group of NLRs, ADR1s, are mutated, indicating the cell-death of bak1 bkk1 is the consequence of NLR activation. Furthermore, introduction of a Pseudomonas syringae effector HopB1, which proteolytically cleaves activated BAK1 and its paralogs via either gene transformation or bacterium-delivery, results in a cell-death phenotype in an ADR1s-dependent manner. Our study thus pinpoints that BAK1 and its paralogs are likely guarded by NLRs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Morte Celular , Proteínas NLR , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética
9.
Small ; 16(21): e2000598, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32363795

RESUMO

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Assuntos
Imunidade Inata , Nanoestruturas , Medição de Risco , Imunidade Adaptativa , Animais , Imunidade Inata/efeitos dos fármacos , Nanoestruturas/toxicidade , Medição de Risco/métodos
10.
J Integr Plant Biol ; 62(4): 456-469, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30912278

RESUMO

Brassinosteroids (BR) are involved in the control of several developmental processes ranging from root elongation to senescence and adaptation to environmental cues. Thus, BR perception and signaling have to be precisely regulated. One regulator is BRI1-associated kinase 1 (BAK1)-interacting receptor-like kinase 3 (BIR3). In the absence of BR, BIR3 forms complexes with BR insensitive 1 (BRI1) and BAK1. However, the biophysical and energetic requirements for complex formation in the absence of the ligand have yet to be determined. Using computational modeling, we simulated the potential complexes between the cytoplasmic domains of BAK1, BRI1 and BIR3. Our calculations and experimental data confirm the interaction of BIR3 with BAK1 and BRI1, with the BAK1 BIR3 interaction clearly favored. Furthermore, we demonstrate that BIR3 and BRI1 share the same interaction site with BAK1. This suggests a competition between BIR3 and BRI1 for binding to BAK1, which results in preferential binding of BIR3 to BAK1 in the absence of the ligand thereby preventing the active participation of BAK1 in BR signaling. Our model also suggests that BAK1 and BRI1 can interact even while BAK1 is in complex with BIR3 at an additional binding site of BAK1 that does not allow active BR signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/química , Domínio Catalítico , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química
11.
Plant Cell ; 29(9): 2285-2303, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28842532

RESUMO

BAK1 is a coreceptor and positive regulator of multiple ligand binding leucine-rich repeat receptor kinases (LRR-RKs) and is involved in brassinosteroid (BR)-dependent growth and development, innate immunity, and cell death control. The BAK1-interacting LRR-RKs BIR2 and BIR3 were previously identified by proteomics analyses of in vivo BAK1 complexes. Here, we show that BAK1-related pathways such as innate immunity and cell death control are affected by BIR3 in Arabidopsis thaliana BIR3 also has a strong negative impact on BR signaling. BIR3 directly interacts with the BR receptor BRI1 and other ligand binding receptors and negatively regulates BR signaling by competitive inhibition of BRI1. BIR3 is released from BAK1 and BRI1 after ligand exposure and directly affects the formation of BAK1 complexes with BRI1 or FLAGELLIN SENSING2. Double mutants of bak1 and bir3 show spontaneous cell death and constitutive activation of defense responses. BAK1 and its closest homolog BKK1 interact with and are stabilized by BIR3, suggesting that bak1 bir3 double mutants mimic the spontaneous cell death phenotype observed in bak1 bkk1 mutants via destabilization of BIR3 target proteins. Our results provide evidence for a negative regulatory mechanism for BAK1 receptor complexes in which BIR3 interacts with BAK1 and inhibits ligand binding receptors to prevent BAK1 receptor complex formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Arabidopsis/efeitos dos fármacos , Brassinosteroides/metabolismo , Morte Celular/efeitos dos fármacos , Flagelina/farmacologia , Proteínas de Repetições Ricas em Leucina , Ligantes , Mutação/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Fenótipo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais
12.
Plant Cell Environ ; 39(7): 1396-407, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26290138

RESUMO

Secreted peptides and their specific receptors frequently orchestrate cell-to-cell communication in plants. Phytosulfokines (PSKs) are secreted tyrosine-sulphated peptide hormones, which trigger cellular dedifferentiation and redifferentiation upon binding to their membrane receptor. Biotrophic plant pathogens frequently trigger the differentiation of host cells into specialized feeding structures, which are essential for successful infection. We found that oomycete and nematode infections were characterized by the tissue-specific transcriptional regulation of genes encoding Arabidopsis PSKs and the PSK receptor 1 (PSKR1). Subcellular analysis of PSKR1 distribution showed that the plasma membrane-bound receptor internalizes after binding of PSK-α. Arabidopsis pskr1 knockout mutants were impaired in their susceptibility to downy mildew infection. Impaired disease susceptibility depends on functional salicylic acid (SA) signalling, but not on the massive up-regulation of SA-associated defence-related genes. Knockout pskr1 mutants also displayed a major impairment of root-knot nematode reproduction. In the absence of functional PSKR1, giant cells arrested their development and failed to fully differentiate. Our findings indicate that the observed restriction of PSK signalling to cells surrounding giant cells contributes to the isotropic growth and maturation of nematode feeding sites. Taken together, our data suggest that PSK signalling in Arabidopsis promotes the differentiation of host cells into specialized feeding cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Oomicetos/fisiologia , Receptores de Superfície Celular/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/metabolismo , Endocitose , Hormônios Peptídicos/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Ralstonia solanacearum/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais
13.
New Phytol ; 204(4): 955-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25041086

RESUMO

Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidade , Morte Celular/efeitos dos fármacos , Quitina/metabolismo , Interações Hospedeiro-Patógeno , Mutação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais
14.
Plant Cell Environ ; 37(6): 1404-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24895758

RESUMO

Amino acid transporters in plants are crucial for distributing amino acids between plant organs and cellular compartments. The H(+)-coupled plasma membrane transporter CAT1 (cationic amino acid transporter 1) facilitates the high-affinity uptake of basic amino acids. The uptake of lysine (Lys) via the roots was not altered in loss-of-function mutants, in accordance with the minor expression of CAT1 in roots, but plants ectopically overexpressing CAT1 incorporated Lys at higher rates. Exogenous Lys inhibited the primary root of Arabidopsis, whereas lateral roots were stimulated. These effects were augmented by the presence or absence of CAT1. Furthermore, the total biomass of soil-grown plants ectopically overexpressing CAT1 was reduced and the time to flowering was accelerated. These effects were accompanied by only minor changes in the overall amino acid profile. Interestingly, CAT1 belongs to a specific small cluster of nitrogen-containing metabolite transporter genes that are rapidly up-regulated upon infection with Pseudomonas syringae and that may participate in the systemic response of plants to pathogen attack. The overexpression of CAT1 indeed enhanced the resistance to the hemibiotrophic bacterial pathogen P. syringae via a constitutively activated salicylic acid (SA) pathway, which is consistent with the developmental defects and the resistance phenotype.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/microbiologia , Transportador 1 de Aminoácidos Catiônicos/fisiologia , Resistência à Doença/genética , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Transportador 1 de Aminoácidos Catiônicos/análise , Transportador 1 de Aminoácidos Catiônicos/genética , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Lisina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
15.
Plant Signal Behav ; 92014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24780935

RESUMO

BAK1 is a multifunctional leucine-rich repeat receptor kinase (LRR-RLK) that exerts its function by interacting with multiple ligand binding receptors and thereby influences diverse processes varying from brassinosteroid perception via PAMP and DAMP perception to cell death control. We recently identified a new BAK1 interacting protein, BIR2, that is also a LRR-RLK but, in contrast to BAK1, negatively regulates BAK1-dependent PAMP responses. While brassinosteroid responses are not affected by BIR2, cell death is negatively regulated as described for BAK1. BIR2 is released from BAK1 after ligand perception, increasing the pool of free BAK1 that is available to form complexes with activated ligand binding receptors. Individual ligands can only partially release BAK1 from BIR2. After exposition to a cocktail of ligands, almost the complete amount of BAK1 can be released indicating that BAK1 exists, together with BIR2, in subpools that can be individually addressed by specific ligands. These data support the idea that BAK1 exists in preformed complexes with its ligand binding receptor partners. Overexpression of BIR2 results in reduced complex formation of BAK1 with FLS2, showing that BIR2 negatively regulates BAK1 complex formation with ligand binding receptors.

16.
J Struct Biol ; 186(1): 112-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556575

RESUMO

The BAK1-interacting receptor-like kinase 2 (BIR2) belongs to the large family of leucine-rich repeat receptor-like kinases (LRR-RLKs) that mediate development and innate immunity in plants and form a monophyletic gene family with the Drosophila Pelle and human interleukin-1 receptor-associated kinases (IRAK). BIR2 is a negative regulator of BAK1-mediated defense mechanisms and cell death responses, yet key residues that are typically required for kinase activity are not present in the BIR2 kinase domain. We have determined the crystal structure of the BIR2 cytosolic domain and show that its nucleotide binding site is occluded. NMR spectroscopy confirmed that neither wild type nor phosphorylation-mimicking mutants of BIR2 bind ATP-analogues in solution, suggesting that BIR2 is a genuine enzymatically inactive pseudokinase. BIR2 is, however, phosphorylated by its target of regulation, BAK1. Using nano LC-MS/MS analysis for site-specific analysis of phosphorylation, we found a high density of BAK1-transphosphorylation sites in the BIR2 juxta membrane domain, a region previously implicated in regulation of RLKs. Our findings provide a structural basis to better understand signaling through kinase-dead domains that are predicted to account for 20% of all Arabidopsis RLKs and 10% of all human kinases.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Adenilil Imidodifosfato/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Imunidade Vegetal , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Estrutura Secundária de Proteína , Transdução de Sinais , Homologia Estrutural de Proteína
17.
Curr Biol ; 24(2): 134-143, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24388849

RESUMO

BACKGROUND: Transmembrane leucine-rich repeat (LRR) receptors are commonly used innate immune receptors in plants and animals but can also sense endogenous signals to regulate development. BAK1 is a plant LRR-receptor-like kinase (RLK) that interacts with several ligand-binding LRR-RLKs to positively regulate their functions. BAK1 is involved in brassinosteroid-dependent growth and development, innate immunity, and cell-death control by interacting with the brassinosteroid receptor BRI1, immune receptors, such as FLS2 and EFR, and the small receptor kinase BIR1, respectively. RESULTS: Identification of in vivo BAK1 complex partners by LC/ESI-MS/MS uncovered two novel BAK1-interacting RLKs, BIR2 and BIR3. Phosphorylation studies revealed that BIR2 is unidirectionally phosphorylated by BAK1 and that the interaction between BAK1 and BIR2 is kinase-activity dependent. Functional analyses of bir2 mutants show differential impact on BAK1-regulated processes, such as hyperresponsiveness to pathogen-associated molecular patterns (PAMP), enhanced cell death, and resistance to bacterial pathogens, but have no effect on brassinosteroid-regulated growth. BIR2 interacts constitutively with BAK1, thereby preventing interaction with the ligand-binding LRR-RLK FLS2. PAMP perception leads to BIR2 release from the BAK1 complex and enables the recruitment of BAK1 into the FLS2 complex. CONCLUSIONS: Our results provide evidence for a new regulatory mechanism for innate immune receptors with BIR2 acting as a negative regulator of PAMP-triggered immunity by limiting BAK1-receptor complex formation in the absence of ligands.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Imunidade Vegetal , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Ligantes , Mutação , Fosforilação , Proteínas Quinases/genética
18.
Plant Signal Behav ; 8(5): e24119, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23470723

RESUMO

Plant peptide signaling is an upcoming topic in many areas of plant research. Our recent findings show that the tyrosine sulfated peptide receptors PSKR1 and PSY1R are not only involved in growth and development but also in plant defense. They modulate salicylate- and jasmonate-dependent defense pathways in an antagonistic manner and this phenomenon might be dependent on the age and developmental stage of the plant. Here we discuss how the endogenous peptides might integrate growth, wounding, senescence and the opposing defense pathways against biotrophic and necrotrophic pathogens for increased fitness of the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Imunidade Vegetal , Receptores de Superfície Celular/metabolismo , Receptores de Peptídeos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Modelos Biológicos , Mutação , Imunidade Vegetal/genética
19.
Proc Natl Acad Sci U S A ; 110(15): 6211-6, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23431187

RESUMO

Recognition of molecular patterns characteristic of microbes or altered-self leads to immune activation in multicellular eukaryotes. In Arabidopsis thaliana, the leucine-rich-repeat receptor kinases FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize bacterial flagellin and elongation factor EF-Tu (and their elicitor-active epitopes flg22 and elf18), respectively. Likewise, PEP1 RECEPTOR1 (PEPR1) and PEPR2 recognize the elicitor-active Pep epitopes conserved in Arabidopsis ELICITOR PEPTIDE PRECURSORs (PROPEPs). Here we reveal that loss of ETHYLENE-INSENSITIVE2 (EIN2), a master signaling regulator of the phytohormone ethylene (ET), lowers sensitivity to both elf18 and flg22 in different defense-related outputs. Remarkably, in contrast to a large decrease in FLS2 expression, EFR expression and receptor accumulation remain unaffected in ein2 plants. Genome-wide transcriptome profiling has uncovered an inventory of EIN2-dependent and EFR-regulated genes. This dataset highlights important aspects of how ET modulates EFR-triggered immunity: the potentiation of salicylate-based immunity and the repression of a jasmonate-related branch. EFR requires ET signaling components for PROPEP2 activation but not for PROPEP3 activation, pointing to both ET-dependent and -independent engagement of the PEPR pathway during EFR-triggered immunity. Moreover, PEPR activation compensates the ein2 defects for a subset of EFR-regulated genes. Accordingly, ein2 pepr1 pepr2 plants exhibit additive defects in EFR-triggered antibacterial immunity, compared with ein2 or pepr1 pepr2 plants. Our findings suggest that the PEPR pathway not only mediates ET signaling but also compensates for its absence in enhancing plant immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Etilenos/química , Doenças das Plantas/microbiologia , Imunidade Vegetal , Alelos , Arabidopsis/microbiologia , Bactérias/metabolismo , Genes de Plantas , Genoma , Genoma de Planta , Hormônios/metabolismo , Mutação , Peptídeos/química , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Plant J ; 73(3): 469-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23062058

RESUMO

The tyrosine-sulfated peptides PSKα and PSY1 bind to specific leucine-rich repeat surface receptor kinases and control cell proliferation in plants. In a reverse genetic screen, we identified the phytosulfokine (PSK) receptor PSKR1 as an important component of plant defense. Multiple independent loss-of-function mutants in PSKR1 are more resistant to biotrophic bacteria, show enhanced pathogen-associated molecular pattern responses and less lesion formation after infection with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. By contrast, pskr1 mutants are more susceptible to necrotrophic fungal infection with Alternaria brassicicola, show more lesion formation and fungal growth which is not observed on wild-type plants. The antagonistic effect on biotrophic and necrotrophic pathogen resistance is reflected by enhanced salicylate and reduced jasmonate responses in the mutants, suggesting that PSKR1 suppresses salicylate-dependent defense responses. Detailed analysis of single and multiple mutations in the three paralogous genes PSKR1, -2 and PSY1-receptor (PSY1R) determined that PSKR1 and PSY1R, but not PSKR2, have a partially redundant effect on plant immunity. In animals and plants, peptide sulfation is catalyzed by a tyrosylprotein sulfotransferase (TPST). Mutants lacking TPST show increased resistance to bacterial infection and increased susceptibility to fungal infection, mimicking the triple receptor mutant phenotypes. Feeding experiments with PSKα in tpst-1 mutants partially restore the defense-related phenotypes, indicating that perception of the PSKα peptide has a direct effect on plant defense. These results suggest that the PSKR subfamily integrates growth-promoting and defense signals mediated by sulfated peptides and modulates cellular plasticity to allow flexible adjustment to environmental changes.


Assuntos
Arabidopsis/imunologia , Receptores de Peptídeos/fisiologia , Sulfatos/química , Tirosina/química , Arabidopsis/microbiologia , Receptores de Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...